Typing Test

10:00

ਇਸ ਲੇਖ ਵਿੱਚ, ਸਮੀਕਰਨਾਂ ਨੂੰ ਜਾਣੀ-ਪਛਾਣੀ 3-ਅਯਾਮੀ ਵੈਕਟਰ ਕੈਲਕੁਲਸ ਚਿੰਨ-ਧਾਰਨਾ ਵਿੱਚ ਲਿਖਿਆ ਗਿਆ ਹੈ ਅਤੇ ਓਪਰੇਟਰਾਂ ਲਈ ਟੋਪੀਆਂ (ਹੈਟ) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਗਈ ਹੈ (ਜੋ ਜਰੂਰੀ ਨਹੀਂ ਸਾਹਿਤ ਵਿੱਚ ਵੀ ਹੋਵੇ), ਅਤੇ ਜਿੱਥੇ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੇ ਪੁਰਜਿਆਂ ਨੂੰ ਇਕੱਠਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਟੈਂਸਰ ਸੂਚਕਾਂਕ ਧਾਰਨਾ ਨੂੰ ਵੀ ਦਿਖਾਇਆ ਗਿਆ ਹੈ (ਜੋ ਸਾਹਿਤ ਵਿੱਚ ਵਾਰ ਵਾਰ ਵਰਤੇ ਜਾਂਦੇ ਹਨ), ਅਤੇ ਇਸਦੇ ਨਾਲ ਨਾਲ ਆਈਨਸਟਾਈਨ ਜੋੜ ਪ੍ਰੰਪਰਾ ਦੀ ਵਰਤੋਂ ਵੀ ਕੀਤੀ ਗਈ ਹੈ। ਇੱਥੇ ਇਕਾਈਆਂ ਇੱਥੇ ਵਰਤੀਆਂ ਗਈਆਂ ਹਨ; ਗਾਔਸ਼ੀਅਨ ਇਕਾਈਆਂ ਅਤੇ ਕੁਦਰਤੀ ਇਕਾਈਆਂ ਸਾਂਝੇ ਬਦਲਵੇਂ ਬਿਕਲਪ ਹਨ। ਸਾਰੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਪੁਜੀਸ਼ਨ ਪ੍ਰਸਤੁਤੀ ਅੰਦਰ ਲਿਖੀਆਂ ਗਈਆਂ ਹਨ; ਮੋਮੈਂਟਮ ਪ੍ਰਸਤੁਤੀ ਵਾਸਤੇ ਇਕੁਏਸ਼ਨਾਂ ਨੂੰ ਫੋਰੀਅਰ ਟ੍ਰਾਂਸਫੌਰਮ ਕਰਨਾ ਹੀ ਪਿਆ ਹੈ – ਦੇਖੋ ਪੁਜੀਸ਼ਨ ਅਤੇ ਮੋਮੈਂਟਮ ਸਪੇਸ ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਕੁੱਝ ਸੰਦ੍ਰਭਾਂ ਵਿੱਚ ਮੂਲ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਸਫ਼ਲ ਰਿਹਾ ਹੈ, ਖਾਸ ਕਰਕੇ: ਐਂਟੀਮੈਟਰ, ਇਲੈਕਟ੍ਰੌਨ ਸਪਿੱਨ, ਬੁਨਿਆਦੀ ਸਪਿੱਨ-1/2 ਫਰਮੀਔਨਾਂ ਦੀ ਸਪਿੱਨ ਮੈਗਨੈਟਿਕ ਮੋਮੈਂਟਾ, ਫਾਈਨ ਸਟ੍ਰਕਚਰ, ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡਾਂ ਅੰਦਰ ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਕਣਾਂ ਦਾ ਕੁਆਂਟਮ ਡਾਇਨਾਮਿਕਸ।[6] ਪ੍ਰਮੁੱਖ ਨਤੀਜਾ ਡੀਰਾਕ ਸਮੀਕਰਨ ਹੈ, ਜਿਸਤੋਂ ਇਹ ਅਨੁਮਾਨ ਆਪੇ ਹੀ ਲੱਗ ਜਾਂਦੇ ਹਨ। ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ, ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਪ੍ਰਯੋਗਿਕ ਪਰਖਾਂ ਨਾਲ ਸਹਿਮਤੀ ਖੱਟਣ ਲਈ ਰਕਮਾਂ ਨੂੰ ਹੈਮਿਲਟੋਨੀਅਨ ਓਪਰੇਟਰ ਵਿੱਚ ਬਣਾਵਟੀ ਤੌਰ ਤੇ ਦਾਖਲ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਇੰਨਾ ਹੀ ਨਹੀਂ, ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਗਿਆਤ ਕਣ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਇੱਕ ਪੂਰੀ ਤਰਾਂ ਸਵੈ-ਅਨੁਕੂਲ ਸਾਪੇਖਿਕ ਥਿਊਰੀ ਪ੍ਰਤਿ ਇੱਕੋ ਇੱਕ ਸੰਖੇਪਤਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਅਜਿਹੇ ਮਾਮਲਿਆਂ ਨੂੰ ਨਹੀਂ ਦਰਸਾਉਂਦੀ ਜਿੱਥੇ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਬਦਲ ਜਾਂਦੀ ਹੈ; ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਪਦਾਰਥਕ ਰਚਨਾ ਅਤੇ ਵਿਨਾਸ਼ (ਐਨਹੀਲੇਸ਼ਨ) ਵਿੱਚ।[7] ਹੁਣ ਤੱਕ, ਇੱਕ ਹੋਰ ਸਿਧਾਂਤਿਕ ਤਰੱਕੀ, ਇੱਕ ਹੋਰ ਸ਼ੁੱਧ ਥਿਊਰੀ ਜੋ ਇਹਨਾਂ ਹੋਂਦਾ ਅਤੇ ਹੋਰ ਅਨੁਮਾਨਾਂ ਲਈ ਪ੍ਰਵਾਨਗੀ ਦੇਵੇ ਰਿਲੇਟੀਵਿਸਟਿਕ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਰਹੀ ਹੈ ਜਿਸ ਵਿੱਚ ਕਣਾਂ ਦੀ ਵਿਆਖਿਆ ਫੀਲਡ ਕੁਆਂਟਾ ਦੇ ਤੌਰ ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। (ਵੇਰਵਿਆਂ ਲਈ ਲੇਖ ਦੇਖੋ) ਇੰਨਾ ਹੀ ਨਹੀਂ, ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਗਿਆਤ ਕਣ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਇੱਕ ਪੂਰੀ ਤਰਾਂ ਸਵੈ-ਅਨੁਕੂਲ ਸਾਪੇਖਿਕ ਥਿਊਰੀ ਪ੍ਰਤਿ ਇੱਕੋ ਇੱਕ ਸਂਖੇਪਤਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਅਜਿਹੇ ਮਾਮਲਿਆਂ ਨੂੰ ਨਹੀਂ ਦਰਸਾਉਂਦੀ ਜਿੱਥੇ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਬਦਲ ਜਾਂਦੀ ਹੈ; ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਪਦਾਰਥਕ ਰਚਨਾ ਅਤੇ ਵਿਨਾਸ਼ (ਐਨਹੀਲੇਸ਼ਨ) ਵਿੱਚ।[8] ਹੁਣ ਤੱਕ, ਇੱਕ ਹੋਰ ਸਿਧਾਂਤਿਕ ਤਰੱਕੀ, ਇੱਕ ਹੋਰ ਸ਼ੁੱਧ ਥਿਊਰੀ ਜੋ ਇਹਨਾਂ ਹੋਂਦਾ ਅਤੇ ਹੋਰ ਅਨੁਮਾਨਾਂ ਲਈ ਪ੍ਰਵਾਨਗੀ ਦੇਵੇ ਰਿਲੇਟੀਵਿਸਟਿਕ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਰਹੀ ਹੈ ਜਿਸ ਵਿੱਚ ਕਣਾਂ ਦੀ ਵਿਆਖਿਆ ਫੀਲਡ ਕੁਆਂਟਾ ਦੇ ਤੌਰ ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। (ਵੇਰਵਿਆਂ ਲਈ ਲੇਖ ਦੇਖੋ) ਕਈ ਕਾਰਨਾਂ ਕਰਕੇ ਮੱਦਦਗਾਰ ਨਹੀਂ ਰਹਿੰਦੀ। ਓਪਰੇਟਰਾਂ ਦਾ ਵਰਗਮੂਲ ਉਵੇਂ ਨਹੀਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਜਿਵੇਂ ਇਹ ਹੁੰਦਾ ਹੈ; ਇਸਨੂੰ ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ ਤੋਂ ਪਹਿਲਾਂ ਕਿਸੇ ਪਾਵਰ ਸੀਰੀਜ਼ ਅੰਦਰ ਫੈਲਾਉਣਾ ਪੈਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਰਕਮ ਨੂੰ ਇੱਕ ਪਾਵਰ ਤੱਕ ਵਧਾਉਣ ਤੇ, ਇਹ ψ ਉੱਤੇ ਕ੍ਰਿਆ ਕਰ ਸਕਦਾ ਹੈ। ਪਾਵਰ ਸੀਰੀਜ਼ ਦੇ ਇੱਕ ਨਤੀਜੇ ਵਜੋਂ , ਸਪੇਸਟਾਈਮ ਡੈਰੀਵੇਟਿਵ ਪੂਰੀ ਤਰਾਂ ਅਸਮਰੂਪ ਹੁੰਦੇ ਹਨ: ਸਪੇਸ ਡੈਰੀਵੇਟਿਵ ਅਨੰਤ-ਵਿਵਸਥਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਪਰ ਸਮਾਂ ਡੈਰੀਵੇਟਿਵ ਸਿਰਫ ਪਹਿਲੀ ਵਿਵਸਥਾ ਤੱਕ ਰਹਿੰਦੇ ਹਨ, ਜੋ ਚੰਗੇ ਨਹੀਂ ਲਗਦੇ ਅਤੇ ਪ੍ਰੇਸ਼ਾਨ ਕਰਦੇ ਹਨ। ਇੱਕ ਵਾਰ ਫੇਰ ਤੋਂ, ਐਨਰਜੀ ਓਪਰੇਟਰ ਦੀ ਗੈਰ-ਸਥਿਰਤਾ ਦੀ ਸਮੱਸਿਆ ਹੁੰਦੀ ਹੈ, ਜੋ ਵਰਗਮੂਲ ਬਰਾਬਰ ਹੋਣ ਕਰਕੇ ਸਥਿਰ ਨਹੀਂ ਹੁੰਦੇ। ਇੱਕ ਹੋਰ ਸਮੱਸਿਆ, ਜੋ ਪੂਰੀ ਤਰਾਂ ਸਪੱਸ਼ਟ ਨਹੀਂ ਹੈ ਅਤੇ ਗੰਭੀਰ ਸਮੱਸਿਆ ਹੈ, ਇਹ ਹੈ ਕਿ ਇਸਨੂੰ ਗੈਰਸਥਾਨਿਕ ਹੋਣਾ ਸਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਕਾਰਣਾਤਮਿਕਤਾ (ਕੈਜ਼ੂਅਲਟੀ) ਦੀ ਉਲੰਘਣਾ ਕਰਦਾ ਵੀ ਸ਼ਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: ਇਸ ਲੇਖ ਵਿੱਚ, ਸਮੀਕਰਨਾਂ ਨੂੰ ਜਾਣੀ-ਪਛਾਣੀ 3-ਅਯਾਮੀ ਵੈਕਟਰ ਕੈਲਕੁਲਸ ਚਿੰਨ-ਧਾਰਨਾ ਵਿੱਚ ਲਿਖਿਆ ਗਿਆ ਹੈ ਅਤੇ ਓਪਰੇਟਰਾਂ ਲਈ ਟੋਪੀਆਂ (ਹੈਟ) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਗਈ ਹੈ (ਜੋ ਜਰੂਰੀ ਨਹੀਂ ਸਾਹਿਤ ਵਿੱਚ ਵੀ ਹੋਵੇ), ਅਤੇ ਜਿੱਥੇ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੇ ਪੁਰਜਿਆਂ ਨੂੰ ਇਕੱਠਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਟੈਂਸਰ ਸੂਚਕਾਂਕ ਧਾਰਨਾ ਨੂੰ ਵੀ ਦਿਖਾਇਆ ਗਿਆ ਹੈ (ਜੋ ਸਾਹਿਤ ਵਿੱਚ ਵਾਰ ਵਾਰ ਵਰਤੇ ਜਾਂਦੇ ਹਨ), ਅਤੇ ਇਸਦੇ ਨਾਲ ਨਾਲ ਆਈਨਸਟਾਈਨ ਜੋੜ ਪ੍ਰੰਪਰਾ ਦੀ ਵਰਤੋਂ ਵੀ ਕੀਤੀ ਗਈ ਹੈ। ਇੱਥੇ ਇਕਾਈਆਂ ਇੱਥੇ ਵਰਤੀਆਂ ਗਈਆਂ ਹਨ; ਗਾਔਸ਼ੀਅਨ ਇਕਾਈਆਂ ਅਤੇ ਕੁਦਰਤੀ ਇਕਾਈਆਂ ਸਾਂਝੇ ਬਦਲਵੇਂ ਬਿਕਲਪ ਹਨ। ਸਾਰੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਪੁਜੀਸ਼ਨ ਪ੍ਰਸਤੁਤੀ ਅੰਦਰ ਲਿਖੀਆਂ ਗਈਆਂ ਹਨ; ਮੋਮੈਂਟਮ ਪ੍ਰਸਤੁਤੀ ਵਾਸਤੇ ਇਕੁਏਸ਼ਨਾਂ ਨੂੰ ਫੋਰੀਅਰ ਟ੍ਰਾਂਸਫੌਰਮ ਕਰਨਾ ਹੀ ਪਿਆ ਹੈ – ਦੇਖੋ ਪੁਜੀਸ਼ਨ ਅਤੇ ਮੋਮੈਂਟਮ ਸਪੇਸ ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਕੁੱਝ ਸੰਦ੍ਰਭਾਂ ਵਿੱਚ ਮੂਲ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਸਫ਼ਲ ਰਿਹਾ ਹੈ, ਖਾਸ ਕਰਕੇ: ਐਂਟੀਮੈਟਰ, ਇਲੈਕਟ੍ਰੌਨ ਸਪਿੱਨ, ਬੁਨਿਆਦੀ ਸਪਿੱਨ-1/2 ਫਰਮੀਔਨਾਂ ਦੀ ਸਪਿੱਨ ਮੈਗਨੈਟਿਕ ਮੋਮੈਂਟਾ, ਫਾਈਨ ਸਟ੍ਰਕਚਰ, ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡਾਂ ਅੰਦਰ ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਕਣਾਂ ਦਾ ਕੁਆਂਟਮ ਡਾਇਨਾਮਿਕਸ।[6] ਪ੍ਰਮੁੱਖ ਨਤੀਜਾ ਡੀਰਾਕ ਸਮੀਕਰਨ ਹੈ, ਜਿਸਤੋਂ ਇਹ ਅਨੁਮਾਨ ਆਪੇ ਹੀ ਲੱਗ ਜਾਂਦੇ ਹਨ। ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ, ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਪ੍ਰਯੋਗਿਕ ਪਰਖਾਂ ਨਾਲ ਸਹਿਮਤੀ ਖੱਟਣ ਲਈ ਰਕਮਾਂ ਨੂੰ ਹੈਮਿਲਟੋਨੀਅਨ ਓਪਰੇਟਰ ਵਿੱਚ ਬਣਾਵਟੀ ਤੌਰ ਤੇ ਦਾਖਲ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਇੰਨਾ ਹੀ ਨਹੀਂ, ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਗਿਆਤ ਕਣ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਇੱਕ ਪੂਰੀ ਤਰਾਂ ਸਵੈ-ਅਨੁਕੂਲ